›› 2015, Vol. 21 ›› Issue (4): 25-32.DOI: 10.3969/j.issn.1006-8082.2015.04.005
Previous Articles Next Articles
Online:
2015-07-20
Published:
2015-07-20
基金资助:
国家“973”计划(2015CB150400);江苏省自然科学基金(BK20140480);江苏省高校自然科学基金(14KJB210007);中国博士后基金(2014M550312)
CLC Number:
ZHOU Zhen-Xiang, LI Zhi-Kang, DAI Qi-Xing, KONG Xiang-Sheng, WANG Zhi-Qin, GU Jun-Fei. Physiological Limitations and Possible Improve Approaches of Rice Photosynthesis[J]. , 2015, 21(4): 25-32.
周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 顾骏飞. 水稻光合生理限制因素及改善途径研究[J]. 中国稻米, 2015, 21(4): 25-32.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2015.04.005
[1] Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture[J]. J Exp Bot,2000, 51(supply 1): 475-485.[2] 赵黎明. 水稻光合作用研究进展及其影响因素分析[J]. 北方水稻,2014,44(5):66-71.[3] Fromme P, Melkozernov A, Jordan P, et al. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems[J]. FEBS letters, 2003, 555(1): 40-44.[4] 王忠. 植物生理学:2版 [M]. 北京:中国农业出版社,2008:128-132.[5] Osborne B A, Raven J A. Light absorption by plants and its implications for photosynthesis[J]. Biol Rev, 1986, 61(1): 1-60.[6] Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. PCP, 2003, 44(5): 463-472.[7] Nakanishi H, Nozue H, Suzuki K, et al. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls[J]. PCP, 2005, 46(3): 467-473.[8] Zhang H, Li J, Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62(3): 325-337.[9] Huang X, Zhao H, Dong C, et al. Chlorophyll-deficit rice mutants and their research advances in biology[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1685-1691.[10] 周宾. 美国科研人员确定叶绿素调节的基因[J]. 世界农业,2005 (4):59.[11] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield [J]. Annu Rev Plant Biol, 2010, 61: 235-261.[12] Hill R, Bendall F A Y. Function of the two cytochrome components in chloroplasts: a working hypothesis[J]. Nature, 1960, 186: 136-137.[13] 张秀芳,张彬彬,张兰. 叶绿体的电子传递和光合磷酸化[J].滨州师专学报,2002(4):8.[14] Genty B, Harbinson J. Regulation of light utilization for photosynthetic electron transport[J]. Photosynthesis & Environment. Springer Netherlands, 1996: 69-99.[15] Munekage Y, Hojo M, Meurer J, et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 2002, 110(3): 361-371.[16] 陈晓亚,薛红卫. 植物生理与分子生物学:4版[M]. 北京:高等教育出版社,2012,249-266.[17] Nishikawa Y, Yamamoto H, Okegawa Y, et al. PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO2 fixation and biomass production in rice[J]. PCP, 2012, 53(12): 2 117-2 126.[18] Nellaepalli S, Kodru S, Raghavendra A S, et al. Antimycin a sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in arabidopsis thaliana[J]. J Photochem Photobiol B, 2015, 146: 24-33.[19] Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves [J]. Plant Physiol, 1992, 100(4): 1 621-1 626.[20] Bendall D S, Manasse R S. Cyclic photophosphorylation and electron transport [J]. BBA-Bioenergettcs, 1995, 1229(1): 23-38.[21] 黄伟,张石宝,曹坤芳. 高等植物环式电子传递的生理作用[J]. 植物科学学报,2012,30(1):100-106.[22] 黄伟. 环式电子传递在植物抗环境胁迫过程中的重要作用[D]. 合肥:中国科学技术大学,2012.[23] Clarke J E, Johnson G N. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley[J]. Planta, 2001, 212(5-6): 808-816.[24] Foyer C H, Neukermans J, Queval G, et al. Photosynthetic control of electron transport and the regulation of gene expression[J]. J Exp Botany, 2012, 63(4): 1 637-1 661.[25] 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报,2014,23(4):322-329.[26] 李朝霞,赵世杰,孟庆伟. 光呼吸途径及其功能[J]. 植物学通报,2003,20(2):190-197.[27] 叶威. 水稻淡黄绿叶色突变体光呼吸及其相关基因表达的研究[D]. 长沙:湖南师范大学,2014.[28] Somerville, C R. An early arabidopsis demonstration. Resolving a few issues concerning photorespiration[J]. Plant Physiol, 2001, 125(1): 20-24.[29] 李勇. 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究[D]. 南京:南京农业大学,2011.[30] Whitney S M, Baldet P, Hudson G S, et al. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts[J]. Plant J, 2001, 26(5): 535-547.[31] Parry M A J, Reynolds M, Salvucci M E, et al. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency[J]. J Exp Bot, 2010: 304.[32] Ku M S B, Cho D, Li X, et al. Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences[J]. Novartis Found Symp, 2001, 236: 100-111. [33] 张边江,陈全战,焦德茂. 构建C4水稻——一场新绿色革命的挑战[J]. 科技导报,2008,26(19):96-98.[34] Kebeish R, Niessen M, Thiruveedhi K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J]. Nat Biotechnol, 2007, 25(5): 593-599.[35] Peterhansel C, Maurino V G. Photorespiration redesigned[J]. Plant Physiol, 2011, 155(1): 49-55.[36] Kebeish R, Niessen M, Thiruveedhi K. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nat Biotcchnol, 2007, 25: 593-599.[37] Griffiths H. Plant biology: designs on Rubisco[J]. Nature, 2006, 441(7096): 940-941.[38] 田秀英. RuBP 羧化酶/加氧酶的研究进展[J]. 重庆师专学报,2000,19(3):77-79.[39] 梅杨,李海蓝,谢晋,等. 核酮糖-1,5-二磷酸羧化酶/加氧酶 (Rubisco)[J]. 植物生理学通讯,2007,43(2):363-368.[40] Salvucci M E, Portis Jr A R, Ogren W L. A soluble chloroplast protein catalyzes ribulose bisphosphate carboxylase/oxygenase activation in vivo[J]. Photosynth Res, 1985, 7(2): 193-201.[41] Portis Jr A R, Kumar A, Li C. The rate of photosynthesis remains relatively high at moderately high temperatures in Arabidopsis thaliana rca mutant expressing thermostable chimeric Rubisco activase[J]. Photosynth Res, 2007, 91: 317-317.[42] Kurek I, Chang T K, Bertain S M, et al. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress[J]. The Plant Cell Online, 2007, 19(10): 3230-3241.[43] 金松恒,翁晓燕,王妮妍,等. Rubisco 活化酶基因反义表达载体的构建与水稻的遗传转化[J]. 遗传,2005,26(6):881-886.[44] 李海霞,王真梅,曾汉来. 植物 Rubisco 活化酶的研究进展[J]. 植物生理学报,2010 (11):1092-1100.[45] 张国,王玮,邹琦. Rubisco 活化酶的分子生物学[J]. 植物生理学通讯,2004,40(5):633-637.[46] Morita K, Hatanaka T, Misoo S, et al. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice[J]. Plant physiol, 2014, 164(1): 69-79.[47] Zarzycki J, Axen S D, Kinney J N, et al. Cyanobacterial-based approaches to improving photosynthesis in plants[J]. J Exp Bot, 2013, 64: 787-798.[48] McGrath J M, Long S P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis[J]. Plant physiol, 2014, 164(4): 2247-2261.[49] Price G D, Pengelly J J L, Forster B, et al. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species[J]. J Exp Bot, 2013, 64: 753-768.[50] Lin M T, Occhialini A, Andralojc P J, et al. A faster Rubisco with potential to increase photosynthesis in crops[J]. Nature, 2014, 513(7519): 547-550.[51] Ku M S B, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nat Biotechnol, 1999, 17(1): 76-80.[52] Fukayama H, Tsuchida H, Agarie S, et al. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice[J]. Plant Physiol, 2001, 127(3): 1136-1146.[53] Takeuchi Y, Akagi H, Kamasawa N, et al. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme[J]. Planta, 2000, 211(2): 265-274.[54] 张边江,陈全战,焦德茂. 构建 C4 水稻 ——一场新绿色革命的挑战[J]. 科技导报,2008,26(19):96-98.[55] Kaldenhoff R. Mechanisms underlying CO2 diffusion in leaves[J]. Curr Opin Plant Biol, 2012, 15(3): 276-281.[56] Bota J, Medrano H, Flexas J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress?[J]. New Phytol, 2004, 162(3): 671-681.[57] 孟雷,李磊鑫. 水分胁迫对水稻叶片气孔密度,大小及净光合速率的影响[J]. 沈阳农业大学学报,1999,30(5):477-480.[58] Qingsen Z, Jianchang Y, Weyers Z, et al. Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves [J]. Acta Agronomica Sinica, 1995, 5: 3.[59] Takai T, Yano M, Yamamoto T. Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice[J]. Field Crops Res, 2010, 115(2): 165-170.[60] Homma K, Shiraiwa T. Evaluation of water stress in soybean [Glycine max] based on the difference in canopy temperature between soybean and rice [Oryza sativa] [J]. Jpn J Crop Sci, 2009, 78(3): 387-394.[61] Hackl H, Baresel J P, Mistele B, et al. A comparison of plant temperatures as measured by thermal imaging and infrared thermometry[J]. J Agron Crop Sci, 2012, 198(6): 415-429.[62] Evans J R, Kaldenhoff R, Genty B, et al. Resistances along the CO2 diffusion pathway inside leaves [J]. J Exp Bot, 2009, 60(8): 2 235- 2 248.[63] Flexas J, Diaz‐Espejo A, Galmes J, et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves[J]. Plant Cell Environ, 2007, 30(10): 1284-1298.[64] Harley P C, Loreto F, Di Marco G, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4): 1429-1436.[65] Evans J R, Sharkey T D, Berry J A, et al. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants[J]. Functi Plant Biol, 1986, 13(2): 281-292.[66] Terashima I, Hanba Y T, Tholen D, et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiol, 2011, 155(1): 108-116.[67] Scafaro A P, von Caemmerer S, Evans J R, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness [J]. Plant Cell Environ, 2011, 34(11): 1 999-2 008. [68] Lauteri M, Haworth M, Serraj R, et al. Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering[J]. PloS One, 2014, 9(10): e109054.[69] Adachi S, Nakae T, Uchida M, et al. The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis[J]. J Exp Bot, 2013, 64(4): 1 061-1 072.[70] Jones H G. Moderate-term water stresses and associated changes in some photosynthetic parameters in cotton[J]. New Phytol, 1973, 72(5): 1095-1105.[71] Bernacchi C J, Portis A R, Nakano H, et al. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo[J]. Plant Physiol, 2002, 130(4): 1992-1998.[72] Yamori W, Noguchi K, Hanba Y T, et al. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures[J]. Plant Cell Physiol, 2006, 47(8): 1069-1080.[73] Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytol, 2007, 175(1): 81-93.[74] Warren C R. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer[J]. J Exp Bot, 2008, 59(7): 1 475-1 487.[75] Galmés J, Medrano H, Flexas J. Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations[J]. J Exp Bot, 2006, 57(14): 3659-3667.[76] During H. Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.)[J]. Vitis, 2003, 42(2): 65-68.[77] Harley P C, Loreto F, Di Marco G, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4): 1 429-1 436.[78] Brautigam A, Kajala K, Wullenweber J, et al. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species[J]. Plant Physiol, 2011, 155(1): 142-156.[79] Uehlein N, Sperling H, Heckwolf M, et al. The Arabidopsis aquaporin PIP1; 2 rules cellular CO2 uptake[J]. Plant Cell Environ, 2012, 35(6): 1077-1083.[80] Hanba Y T, Shibasaka M, Hayashi Y, et al. Overexpression of the barley aquaporin HvPIP2; 1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants[J]. Plant Cell Physiol, 2004, 45(5): 521-529.[81] Flexas J, Ribas‐Carbó M, Hanson D T, et al. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo[J]. Plant J, 2006, 48(3): 427-439.[82] Farquhar G D, von Caemmerer S, Bery J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149: 78-90[83] Sage R F. Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective[J]. Photosynth Res, 1994, 39(3): 351-368.[84] Hikosaka K, Murakami A, Hirose T. Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia[J]. Plant Cell Environ, 1999, 22(7): 841-849.[85] Von Caemmerer S, Farquhar G D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 1981, 153(4): 376-387.[86] Evans J R, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach[J]. Funct Plant Biol, 1987, 14(1): 59-68.[87] Sudo E, Makino A, Mae T. Differences between rice and wheat in ribulose‐1, 5‐bisphosphate regeneration capacity per unit of leaf‐N content[J]. Plant Cell Environ, 2003, 26(2): 255-263.[88] Willey D L, Fischer K, Wachter E, et al. Molecular cloning and structural analysis of the phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator[J]. Planta, 1991, 183(3): 451-461.[89] 夏叔芳.叶绿体代谢物运转与光合产物的调节[J]. 植物生理学通讯,1980(5):21.[90] 郑炳松,黄有军,王正加,等. 植物磷酸运转器的结构与功能研究进展[J]. 浙江林学院学报,2007,24(2):225-230.[91] Laisk A, Walker D A. Control of phosphate turnover as a rate-limiting factor and possible cause of oscillations in photosynthesis: a mathematical model[J]. P Roy Soc Lond B Bio, 1986, 227(1248): 281-302.[92] Riesmeier J W, Flügge U I, Schulz B, et al. Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants[J]. Proc Natl Acad Sci USA, 1993, 90(13): 6 160-6 164.[93] 胡梦芸,张正斌,徐萍. 植物光合产物转运蛋白及其生物学功能[J]. 植物生理学通讯,2008,44(1):1-6.[94] Murchie E H, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research[J]. New Phytol, 2009, 181(3): 532-552.[95] von Caemmerer S, Quick W P, Furbank R T. The development of C4 rice: current progress and future challenges[J]. Science, 2012, 336(6089): 1 671-1 672. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||